

by Cleve Moler

MATLAB started its life in the late 1970s as an interactive calculator built
on top of LINPACK and EISPACK, which were then state-of-the-art Fortran
subroutine libraries for matrix computation. The mathematical core for all
versions of MATLAB, up to version 5.3, has used translations to C of about
a dozen of the Fortran subroutines from LINPACK and EISPACK.

LAPACK is the modern replacement for LINPACK and EISPACK. It is a
large, multi-author, Fortran library for numerical linear algebra. A new
version was released in July and is available from NETLIB
(www.netlib.org/lapack). LAPACK was originally intended for use on
supercomputers and other high-end machines. It uses block algorithms,
which operate on several columns of a matrix at a time. On machines with
high-speed cache memory, these block operations can provide a
significant speed advantage. LAPACK also provides a more extensive set
of capabilities than its predecessors do.

The speed of all these packages is closely related to the speed of the Basic Linear Algebra
Subroutines, or BLAS. EISPACK did not use any BLAS. LINPACK used Level 1 BLAS, which
operate on only one or two vectors, or columns of a matrix, at a time. Until now, MATLAB has used
carefully coded C and assembly language versions of these Level 1 BLAS. LAPACK's block
algorithms also make use of Level 2 and Level 3 BLAS, which operate on larger portions of entire
matrices. The NETLIB distribution of LAPACK includes Reference BLAS written in Fortran. But the
authors intended that various hardware and operating system manufacturers provide highly
optimized, machine-specific, versions of the BLAS for their systems.

It is finally time to incorporate LAPACK into MATLAB. Almost all modern machines have enough
cache memory to profit from LAPACK's design. Several key chip and computer vendors now offer
optimized Level 1, 2, and 3 BLAS. A new alternative to the vendor BLAS is available from ATLAS, a
research project at the University of Tennessee, where routines optimized for any particular
machine can be generated automatically from parameterized code fragments.

The first MATLABs ran in the one-half megabyte memory available on the first PC, so it was
necessary to keep code size at a minimum. One general-purpose eigenvalue routine,a single-shift
complex QZ algorithm not in LINPACK or EISPACK, was developed for all complex and
generalized eigenvalue problems. The extensive list of functions now available with LAPACK
means that MATLAB's space saving general-purpose codes can be replaced by faster, more
focused routines. There are now 16 different code paths underlying the eig function, depending on
whether there are one or two arguments, whether the arguments are real or complex, whether the
problem is symmetric and whether the eigenvectors are requested.

Current Issue
Winter 2001

Cleve's Corners
1994-2001

Previous Issues
Winter 2000
Summer 1999
Winter 1999
Summer 1998
Winter 1998
MATLAB
Special
Edition 1997
Simulink
Special
Edition 1997
Fall 1996
Summer 1996
Spring 1996
Winter 1996

Subscribe Now

MATLAB Incorporates
LAPACK

Increasing the speed and capabilities of matrix
computation

Page 1 of 4Cleve's Corner

04/04/2001file://C:\TEMP\Cleve's%20Corner.htm

Measuring the speed improvements provided by LAPACK-based MATLAB is a delicate and
interesting business. Operations on small matrices happen so fast that the time is hard to measure
accurately. To see the effects of cache usage patterns, it is desirable to use all values of the matrix
order, n, up to several hundred. As n increases, the execution time increases as , so one careful
experiment can require several hours to run.

With MATLAB version 5.3, which is currently available on Release 11 of the MathWorks CD, the
code for matrix computation is contained in a library called numerics.dll on the PC and
libmwnumerics.so on various UNIX machines. We have measured execution times and speed
improvements for three different versions of this library and color-coded the results in our graphs.
The three versions are:

Using the fact that matrix multiplication requires 2 floating-point operations, we obtain the
megaflop rates shown in the second graph. For values of n larger than 256, the megaflop rate for
the current and reference libraries drops from about 40 to about 12. (You can also see the the kink
in the green and blue execution time graph near n=256.) This is because there are three matrices
involved in the computation, and when their order is larger than 256 they no longer fit in the cache
memory of this particular computer. Cache size also has some effect on the red line, but it is not so
severe. The third graph shows the ratio of the execution times. This is the speedup we can expect
from a block algorithm for matrix multiplication in this environment. We get a factor of almost three
for matrices that fit in cache and a factor between six and seven for larger matrices.

The irregular detailed behavior of our graphs is only partly due to experimental noise in the timings.
There are also complicated, but reproducible, effects of what we might call "cache resonance,"
interactions between the memory access patterns of a particular algorithm, the locations in memory
of the matrices involved and cache line size and replacement policy. For example, values of n that
are divisible by a power of two sometimes lead to a lower megaflop rate.

Multiplication of large matrices is rarely the rate determining operation in serious applications, so
matrix multiplication, by itself, is an overly simplistic benchmark. But matrix multiplication is the

� Current (blue): The numerics library included with MATLAB version 5.3
� Reference (green): A new numerics library based on LAPACK and machine-independent Fortran

Reference BLAS
� Optimized (red): A new numerics library based on LAPACK and BLAS optimized for each

particular computer

Our first three graphs show the results of timing
experiments involving matrix multiplication, run
on a fairly old (and slow) Sun SPARC 10 with
the Solaris operating system. For each value of
n from 1 to 528, we generated two n-by-n
matrices and then used tic and toc to time
the matrix product C = A*B. For small values
of n, we did this several thousand times to avoid
clock resolution difficulties. The first graph
shows the execution times for our three
versions of the numerics library. The current
version and the version with the reference
BLAS use unblocked algorithms in this situation
and run at nearly the same speed. They require
almost 25 seconds to compute a matrix product
of order 528. The optimized version with the
BLAS provided by Sun in their Sun
Performance Library does the computation in
less than 3.6 seconds.

Page 2 of 4Cleve's Corner

04/04/2001file://C:\TEMP\Cleve's%20Corner.htm

most important routine in the Level 3 BLAS because it is the heart of the more complicated block
algorithms in LAPACK itself.

Our final graph involves a different kind of comparison. The graph still shows speedup as a function
of matrix order, but the comparison is between two different algorithms rather than between two
implementations of essentially one algorithm. The primary tool for the solution of generalized matrix
eigenvalue problems,

Ax = Bx

is the function qz(A,B). MATLAB 5.3 has only one version of the QZ
algorithm. It always uses complex arithmetic and produces complex
results, even if the input matrices are real. LAPACK provides a real QZ
algorithm for real matrices, so we can now have qz(A,B,'real') and
qz(A,B,'complex'). The graph shows the ratio of the execution
for these two calculations. For large real matrices, the real QZ algorithm
is four times faster than the complex QZ algorithm. The big spike at n =
256 is a cache resonance phenomenon.

Our next three graphs show the performance of
Gaussian elimination, as seen in the function
lu(A), on a 400 MHz Pentium PC running Linux.
Again, n takes on all values from 1 to 528 and the
blue, green and red lines correspond to the current
numerics library, our new library with reference
BLAS, and our new library with optimized BLAS. The
three graphs show execution time, megaflops, and
speedup. For Linux, we are using the optimized
BLAS developed by Greg Henry of the University of
Tennessee and Intel Corp. The effect of operating
out of cache is not so dramatic here because there is
only one matrix and the working order of the matrix
decreases as the triangular decomposition proceeds.
On this machine, we reach almost 200 megaflops
with the optimized BLAS. For large matrices, we can
expect lu(A) to be up to eight times faster.

The next three graphs show performance of
eigenvalue computation, as done by eig(A), on
a 233 MHz Pentium laptop running Windows NT.
Optimized BLAS for this machine are available
from Intel's Math Kernel Library and from the
ATLAS project. These two sets of BLAS have
roughly equal performance. For the eigenvalue
computation, the speed improvement factor
approaches two, because there is not so much
opportunity for block algorithms. This is certainly
significant, but not as spectacular as the
speedups for the simpler algorithms.

Page 3 of 4Cleve's Corner

04/04/2001file://C:\TEMP\Cleve's%20Corner.htm

LAPACK with machine-specific BLAS will eventually offer the opportunity to use multithreading for
additional speed enhancements. Some of the high-end PCs and workstations available today have
two, or even four, processors sharing a common memory. It will be possible with multithreaded
BLAS to devote all of the processors to a single matrix computation. But in the MATLAB
environment, it might be more effective to use multiple processors for other activities, like graphics.
We have not yet done any serious investigation of these tradeoffs.

Regrettably, one popular MATLAB feature must be a casualty with the introduction of LAPACK.
flops function, which keeps a running count of the number of floating-point operations, is no
longer feasible. Most of the floating point operations are now done in optimized BLAS that do not
keep flop counts. However, with modern computer architectures, floating-point operations are no
longer the dominant factor in execution speed. Memory references and cache usage are most
important.

An LAPACK-based numerics library will be part of the next major release of MATLAB. In the
meantime, if you want your own copy for MATLAB 5.3, please visit our Web page,

www.mathworks.com/company/newsletter/clevescorner/win00.cleve.shtml

You will find numerics libraries available for several different computers. If you install them on your
machine, you should see computations involving large matrices speed up by at least a factor of two
and possibly by a factor as large as eight.

 Using MathWorks Products For... I Training I MATLAB Based Books I Third-Party Products

Page 4 of 4Cleve's Corner

04/04/2001file://C:\TEMP\Cleve's%20Corner.htm

